A Bayesian Cure Rate Model for Repeated Measurements and Interval Censoring

نویسنده

  • LAURA A. THOMPSON
چکیده

We extend a recently published multivariate Bayesian cure rate model to handle interval censoring and a varying number of measurements per individual. The model assumes an unknown number of latent causes of the event in question at each repeated measurement. This number is assumed to be distributed Poisson, with rate a function of covariates multiplied by a subject-specific frailty term. The observed event time is the minimum of the event times of the latent causes, and may only be recorded as contained within a given time interval. If the number of latent causes of the event is zero for an individual at a measurement, then that individual will not experience the event at that measurement. We present the model for a general frailty distribution and lifetime distribution. Our model formulation also allows covariates to describe the lifetime distribution. We illustrate the model using a data set from NASA’s Hypobaric Decompression Sickness Databank. We model the time to onset of grade IV venous gas emboli in hypobaric environment using both a gamma frailty distribution and an inverse Gaussian frailty distribution. We compare the two frailty models using the conditional predictive ordinate (CPO) statistic.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cure - rate estimation under Case - 1 interval censoring Running title : Cure - rate under interval censoring

We consider nonparametric estimation of cure-rate based on mixture model under Case-1 interval censoring. We show that the nonparametric maximum-likelihood estimator (NPMLE) of cure-rate is non-unique as well as inconsistent , and propose two estimators based on the NPMLE of the distribution function under this censoring model. We present a cross-validation method for choosing a 'cut-off' point...

متن کامل

مقایسه مدل‌های بیزی پارامتریک در تحلیل عوامل مؤثر بر میزان بقای بیماران مبتلا به سرطان معده

Background & Objectives: The Cox proportional-hazards regression and other parametric models model have achieved widespread use in the analysis of time-to-event data with censoring and covariates. However employing Bayesian method has not been widely used or discussed. The aim of this study was to evaluate the prognostic factors in using Bayesian interval censoring analysis.Methods: This cohort...

متن کامل

E-Bayesian Estimations of Reliability and Hazard Rate based on Generalized Inverted Exponential Distribution and Type II Censoring

Introduction      This paper is concerned with using the Maximum Likelihood, Bayes and a new method, E-Bayesian, estimations for computing estimates for the unknown parameter, reliability and hazard rate functions of the Generalized Inverted Exponential distribution. The estimates are derived based on a conjugate prior for the unknown parameter. E-Bayesian estimations are obtained based on th...

متن کامل

برآورد عوامل موثر بر دفع پیوند دوطرفه در بیماران مبتلا به قوز قرنیه با مدل شکنندگی شفایافته بیزی

Abstract Background: Although corneal graft may be rejected by the immune system of the recipient it remains as the most successful operation as compared to transplantation of other tissues. Since most patient do not reject the grafts, those who do are in the minority. This study was carried out to assess the usefulness of the cure frailty model for determining the significance of risk facto...

متن کامل

Bayesian Two-Sample Prediction with Progressively Type-II Censored Data for Some Lifetime Models

Prediction on the basis of censored data is very important topic in many fields including medical and engineering sciences. In this paper, based on progressive Type-II right censoring scheme, we will discuss Bayesian two-sample prediction. A general form for lifetime model including some well known and useful models such asWeibull and Pareto is considered for obtaining prediction bounds ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003